
木の編集距離による文単位での C プログラムの定量的評価に向けて

Toward Quantified Evaluation of C Programs
at Statement-level Utilizing Tree Edit Distance

達川 航充*1, 関澤 俊弦*2
Wataru TATSUKAWA*1, Toshifusa SEKIZAWA*2

*1日本大学大学院工学研究科
*1 Graduate School of Engineering, Nihon University

*2日本大学工学部
*2 College of Engineering, Nihon University

Email: cewa25007@g.nihon-u.ac.jp

あらまし：大学における学生のプログラム評価手法については様々な研究が報告されている。代表的な手

法の一つは、抽象構文木 (AST) を用いてプログラムの類似性を評価する。本研究では、C 言語の演習課

題 1 問の学生 50 名の提出プログラムについて、正規化 AST に対する文単位に基づく木の編集距離による

評価を行う。編集距離は理解度の評価指標の一つとなる可能性を示す。

キーワード：プログラミング教育、正規化 AST、文単位評価

1. はじめに
大学のプログラミング教育では、学生は講義内容

に沿って演習としてプログラムを記述する。プログ

ラムの記述においては、式と文や、制御構造、関数

など様々な言語要素の知識が必要となる。

プログラミング教育におけるプログラム評価につ

いては数多くの手法が研究されてきた[1], [2]。他の

研究 [3], [4] では、木の編集距離に基づく 抽象構文

木 (AST: Abstract Syntax Tree) による評価を報告し

ている。この報告では AST 全体を比較対象としてい

る。また、AST の部分木を扱うことでプログラムの

文レベルでの解析を可能にする研究も多数存在する。
本研究は AST に基づく文単位の評価によるプロ

グラミング理解度評価を目的とする。AST を用いた

プログラム比較による定量的な評価のため、プログ

ラミング言語の要素とプログラムの構造を扱う。

2. AST の等価性と木の編集距離
AST の等価性とは、2 つの AST が同一か否かを判

定することである。AST の等価性にはいくつかの分

類がある。比較前に変数などを正規化した後に判定

する正規化構造的等価性や限定された入力に対して

同一の振舞いを確認することで判定する行動的等価

性などがある。
木の編集距離とはある木構造を別の木構造に編集

変換するために必要な最小操作数である。

ZhangShasha (ZSS) アルゴリズム[5]は、木の編集距

離を求めるアルゴリズムであり、編集には挿入、削

除、置換の操作が用いられる。ラベル付き順序木

𝑇ଵ, 𝑇ଶに対する木の編集距離𝛿(𝑇ଵ, 𝑇ଶ)は、次のとおり

定義される。
𝛿(𝑇ଵ, 𝑇ଶ) = min {𝑐𝑜𝑠𝑡(𝑆) | 𝑆 is a sequence of edits

 transforming 𝑇ଵ 𝑡𝑜 𝑇ଶ},
ここで、コスト関数𝑐𝑜𝑠𝑡(𝑆)は、操作列𝑆に含まれる

すべての編集操作における累積総コストを算出する。

3. 手法
本研究は学生の C言語についての理解を定量的に

評価するため、正規化構造的等価性と行動的等価性

を組み合わせた手法[6]を用いる。
ここで、𝑒𝑥௜を𝑖番目のプログラミング課題とし、解

答モデルの C プログラムと提出された C プログラ

ムを、それぞれ𝑝௔௡௦と𝑝௦௨௕とする。また、𝑝௔௡௦と𝑝௦௨௕

から変換された正規化 AST をそれぞれ𝐴𝑆𝑇௔௡௦と

𝐴𝑆𝑇௦௨௕とする。これらの正規化 AST、𝐴𝑆𝑇௔௡௦と𝐴𝑆𝑇௦௨௕、

は文単位で比較される。具体的には、𝑝௔௡௦における

評価の基準となる文を𝑆とし、対応する部分木を

𝐴𝑆𝑇௔௡௦[𝑆] と表記する。また、𝐴𝑆𝑇௦௨௕[𝑇௞] を文𝑇௞に対

応する𝐴𝑆𝑇௦௨௕の部分木と定義する。本手法では、

𝐴𝑆𝑇௔௡௦[𝑆]を選択し、各文 𝑇௞(𝑘 ≥ 1)に対して𝐴𝑆𝑇௦௨௕

から𝐴𝑆𝑇௦௨௕[𝑇௞] を抽出する。次に木の編集距離

𝛿(𝐴𝑆𝑇௔௡௦[𝑆], 𝐴𝑆𝑇௦௨௕[𝑇௞])を求める。複数の木の編集距

離のうち次の式で定義されている最小の距離𝐼を理

解度の指標として採用する。
𝐼 = min {𝛿(𝐴𝑆𝑇௔௡௦[𝑆], 𝐴𝑆𝑇௦௨௕[𝑇௞])| for each 𝑇௞ }

図 1 に、手法の過程を示す。

図 1 正規化 AST に基づく手法の過程

北海道地区 教育システム情報学会 2025年度学生研究発表会

19

本研究では、変数名および、関数名、ブロック文、

糖衣構文のうちインクリメント/デクリメント演算

子を除く複合代入演算子のみを正規化の対象とする。

ブロック文を含む if、while、for などの文は単一

文として正規化されるが、ネスト構造は保持される。

また、数値と文字列は正規化の対象としない。

4. 評価
本研究を評価するために、日本大学工学部情報工

学科の講義「プログラミングの基礎及び演習」で

2024 年度に課された課題 1 問に対して、提案手法を

適用する。演習問題は、C 言語の反復処理の復習問

題である。この演習問題に対して、模範解答のプロ

グラムを𝑝௔௡௦として、学生の提出プログラム𝑝௦௨௕と

の比較を行う。本研究で用いたプログラミングの基

礎及び演習の演習問題文を次に引用する。
「n 人の学生(n<1)の試験の点数(整数値 0～100)を

読み込み、平均点及び最高点と最低点の人の学籍番

号と点数を示すプログラムを作成せよ」
本研究における𝑝௦௨௕は上記の問題を解いた学生 50

名のプログラムである。本研究で用いる提出プログ

ラムはすべてコンパイルが通ることを確認している。
対象とした演習課題は復習問題であることから、

内容の理解度や定着度合いに着目する。この演習課

題の模範解答𝑝௔௡௦では for 文を用いていることから、

本研究では for文同士の比較結果に限定して木の編

集距離を評価する。評価のためには木の編集距離の

各操作に対してコストを定める必要がある。本研究

では、挿入と削除はコスト 1.0 とする。置換のコス

トとして、変数名の差異による置換は 0.1、定数の差

異は 0.5 として、他は 1.0 とする。なお、同一の置換

のコストは 0.0 である。

図 2 提出プログラムの木の編集距離

図 2 に各学生の提出プログラムの木の編集距離を

示す。各学生の木の編集距離は、コストに比べると

大きい。得られた木の編集距離は最小値が 10.7、最

大値が 51.8 である。この結果は、学生の提出プロ

グラムが多様であるためと考えられる。よって、文

単位での正規化 AST の比較による木の編集距離は、

学生のプログラムの理解度として有効であると考え

られる。

5. 考察
本研究で対象とした演習課題の評価で木の編集距

離が大きくなった理由について考察する。本研究の

模範解答𝑝௔௡௦では、for 文内で入出力処理および条

件分岐による処理が行われている。学生の提出プロ

グラムでは、条件分岐として if-else文や異なる条

件式など様々な解法が見られる。これらの差異によ

り木の編集距離が大きくなったと考えられる。今回

の評価で得られた学生全体の木の編集距離の結果は

それぞれ異なっている。この結果より、文単位の木

の編集距離は学生のプログラミング理解度を測る指

標の一つになる可能性があると考えられる。

6. おわりに
本研究では、演習課題 1 問の提出プログラムに対

して、繰り返し処理に着目して文単位で木の編集距

離の評価を行った。個々の学生についての評価では

大きな木の編集距離が得られた。学生 50 名の木の編

集距離はそれぞれ異なっている。この結果は、文単

位の木の編集距離は学生の理解度を測る指標となる

可能性を示している。
木の編集距離は操作の累積コストであるため、

個々の操作を特定することはできない。この問題に

対して、今後の課題の一つは、編集操作のコストの

定義の設定により差異が生じた文を特定できるよう

にすることである。

謝辞

本研究は JSPS 科研費 JP24K15233 の助成を受けた

ものです。

参考文献
(1) J. C. Paiva, J. P. Leal, and A. Figueira, “Automated

assessment in ´ computer science education: A state-of-the-
art review,” ACM Transactions on Computing Education
(TOCE), vol. 22, no. 3, pp. 1–40, 2022.

(2) M. Messer, N. C. Brown, M. Kolling, and M. Shi,
“Automated grading ¨ and feedback tools for programming
education: A systematic review,” ACM Transactions on
Computing Education, vol. 24, no. 1, pp. 1–43, 2024.

(3) Y. Song, C. Lothritz, X. Tang, T. Bissyande, and J. Klein,
“Revisiting code ́ similarity evaluation with abstract syntax
tree edit distance,” in Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2024, pp. 38–46.

(4) A.-T. P. Nguyen, V.-D. Hoang et al., “Development of code
evaluation system based on abstract syntax tree,” Journal of
Technical Education Science, vol. 19, no. Special Issue 01,
pp. 15–24, 2024.

(5) K. Zhang and D. Shasha, “Simple fast algorithms for the
editing distance between trees and related problems,”
SIAM journal on computing, vol. 18, no. 6, pp. 1245–1262,
1989.

(6) W. Tatsukawa, and T. Sekizawa, “Statement-level
Evaluation of C Programs with Tree Edit Distance on
Normalized AST,” 2026 the 14th International Conference
on Information and Education Technology, (accepted, to
appear).

北海道地区 教育システム情報学会 2025年度学生研究発表会

20

	01_北海道_01_北海道_A10_PR0085_ｈ

