バーチャルリアリティを用いた事前指導用工学実験環境の構築

Development of Engineering Experiment for Advance Guidance using Virtual Reality

鈴木 直弥^{*1}, 真野 広夢^{*1}, 瀧本 萌花^{*1}, 千田 和範^{*1} Naoya SUZUKI^{*1}, Hiromu SHINNO^{*1}, Moeka TAKIMOTO^{*1}, Kazunori CHIDA^{*1} ^{*1} 釧路工業高等専門学校電気工学科 ^{*1}National Institute of Technology, Kushiro College of Department of Electrical Engineering Email: p140122@kushiro.kosen-ac.jp

あらまし: 近年 VR 技術の発展により、様々な VR コンテンツが開発されている.またそれに伴い、無料 で VR コンテンツの開発が行えるソフトウェアも利用できる現在だが、誰もがその開発ソフトに必要な知 識を持ち合わせているとは限らない.そこで本研究では、工学実験訓練を題材に、専門知識がなくとも使 いこなせる VR 開発ツールを作成し、様々な実験環境を構築できる VR 開発ツールを作成する. キーワード: VR 開発、ツール、訓練、実験環境、構築

1. はじめに

近年 VR 技術が発展し、文献(1)や文献(2)などの、 教育や医療の分野で、この技術が用いられている. VRとは、Virtual Realityの略で、現実世界を疑似的 にコンピュータ内の仮想空間で再現し、体験する技 術の総称である.これは、ヘッドマウントディスプ レイ(以降 HMD)を通して体験することができる. VR が様々な分野で普及している中, 最近では無料 で VR コンテンツの開発(以降 VR 開発)が行える ソフトウェアも利用できるようになっており、一般 の人でも容易に開発環境を整えることができる。し かし開発を行うには、開発ソフトに含まれるプログ ラミング言語やモデリングなどの知識が必要となる ため、開発のハードルが高いのが現状である。そこ で、その様な知識を必要とせず、専門家でなくとも 使いこなせる VR 開発ツールがあれば、開発者が増 え様々な分野での利用がより期待できる.我々もこ れまで、VR を用いた工学実験用訓練システムの開 発を行ってきた⁽³⁾.これは、VR技術を利用し、事前 に実験装置の操作訓練を行うことで、実験等の学習 効果の向上を目的として行われたが、実施できる実 験の内容が1つに限定されていた.しかし、容易に VR コンテンツを開発できるツールがあれば、専門 家でなくとも使いこなせてかつ、実施できる実験の 幅も広げることができる.

本研究では、専門知識がなくとも容易に VR コン テンツの開発ができるツールを提案し、工学実験用 訓練に適用することで、実施できる実験の幅を広げ ると供に、このツールの有用性を示す.

2. VR 開発ツールの構造

VR 開発ツールの概略図を図1に示す.このツー ルは、開発フェーズと訓練シミュレーションフェー ズで構成されている.開発フェーズとは、学習者に 訓練させたい実験環境を構築する段階である.この フェーズは、実験環境を構築するためのパーツ(以 降構築パーツ)と、それを組み合わせるためのベー

図1 VR 開発ツールの概略図

スからなる.実験には、電源スイッチや計測器など の実験環境を構築するための要素が必要となるが、 構築パーツとはこれらを指す.実験環境を構築する 人は、これらの構築パーツの挙動を、我々が作成し たユーザーインターフェース(以降 UI)を用いて 設定し、図1上段右に示すベースに組み合わせるこ とで実験環境を構築し挙動を再現する.訓練シミュ レーションフェーズとは、開発フェーズで構築した 実験環境を学習者が体験し、実験訓練などを行う段 階である.

今回学習者が使用するデバイスは,視線追跡型VR HMDのFOVE0と三次元入力デバイスのLeapMotion である.FOVE0は、実験中の学習者の視線情報を取 得することで、学習者の視線を誘導し学習効果のあ る訓練を行えるため採用した.LeapMotionは、学習 者の手の動きをVR環境で再現し、実験訓練を行う ために利用した.

3. 実験の内容に適した挙動の再現方法

実験環境を構築し訓練を行うには、実験内容に適した実機の挙動を、構築パーツで再現する必要がある。例えば、「電源スイッチを押すと電圧計が100Vを指すことを確認する」という実験手順があった場

図3 開発フェーズ時の画面

合,構築パーツとしてスイッチと電圧計を用意する. そして図2に示すように、スイッチを押すと、電圧 計の指針が0Vから100Vに移動するという入力と出 力の挙動を、UIを用いて設定することで、実機の挙 動を再現する.そこで今回は、入力用と出力用の構 築パーツを作成した.入力用では「自動始動器」、「遮 断器」、「調整器」、出力用では「電流計」、「電圧計」、

「回転速度計」の3種類の計測器を作成した.これ らを組み合わせて実験内容に適した挙動を再現する.

4. ユーザーインターフェースの作成

4.1 選択画面

図3左側に示す選択画面とは、利用したい構築パ ーツをマウススクロールと左クリックで選ぶ UI で ある.この UI から任意の構築パーツを選択後、画 面上に選択した構築パーツが生成される.生成した 構築パーツはマウス操作で直感的に動かし、ベース に組み合わせることができる.構築パーツを削除す る場合は、削除対象の構築パーツを左クリック後、 キーボードの「Delete」を押すと削除できる.この UI はキーボードの「Q」で表示・非表示を切り替え ることができる.

4.2 パラメータ画面

図3右上に示すパラメータ画面とは、出力用構築 パーツである計測器の指針が指す値を、設定できる UIである.このUIは、選択画面から生成させた任 意の計測器を右クリックすることで表示でき、スラ イダを調整することで、その計測器の指針が指す値 を設定できる.

4.3 連結画面

図 3 右下に示す連結画面とは、3 章で述べた構築 パーツの入力と出力の挙動を設定する UI である.

図4 訓練している状況

これは、入力用構築パーツにのみ対応した UI であ り、生成させた入力用構築パーツを右クリックする ことで表示できる.連結画面内にあるスロットとは、 出力用構築パーツをセットし、入力と出力の連結を 行うものである。例えば3章で述べたように、スイ ッチを入力とし、電圧計を出力として用意した場合、 初めにスイッチを右クリックし、UI を表示させる。 次にスロット 1. を左クリックで選択した後、電圧 計を左クリックすると、図3のスロット 1. の様に 電圧計の名前が表示される.これにより、訓練シミ ュレーションで学習者がスイッチを押すと、電圧計 の針がパラメータ画面で設定した値を指すことがで きる.今回は、1 つの入力用構築パーツにつき、3 つのスロットを用意しているため、ボタンを押すと 最大で3つの計測器を動作させることもできる.

5. 提案した VR 開発ツールの検証

実際に構築パーツを,UIを用いて設定し,様々な 実験内容が再現できるか検証した.実際に実験環境 を構築し,訓練を行っている状況を図4に示す.作 成した UI や構築パーツが所定の動作をすることを 確認し,実験訓練を行うことができた.しかし,複 数の入力用構築パーツが,同じ出力用構築パーツに 対して同時に入力をすると,入力が競合してしまう 現象を確認したので,改善が必要である.

6. まとめ

実験環境を構築するためのパーツと UI を作成し, 専門知識がなくとも使いこなせる VR 開発ツールの 提案を行った.そして,実際に実験環境を構築し, 実験訓練を行うことができた.今後は,今回実装し なかった FOVE0 を用いた視線要素を取り入れ,よ り学習効果のある実験環境を構築できる VR 開発ツ ールの作成を行う必要がある.また、UI の改善や構 築パーツの追加を行い,再現できる実験内容の幅を 広げていく.

参考文献

- (1) [Labster] URL:https://www.labster.com/
- (2) \[Osso VR \] URL:https://www.ossovr.com/
- (3) 成田陸斗: "視線追跡型 VRHMD を用いた工学実験用 訓練システムの開発",第43回教育システム情報学会 全国大会, pp.251-252, 2018