
An Improvement of Informative Test Code Approach for Code Writing
Problem in Java Programming Learning Assistant System

Khin Khin ZAW*1, Nobuo FUNABIKI*2

 Graduate School of Natural Science and Technology
Okayama University, Japan

Email: p8lj1oji@s.okayama-u.ac.jp, funabiki@okayama-u.ac.jp

Abstract: To assist Java programming educations, we have developed a Web-based Java Programming Learning

Assistant System (JPLAS). JPLAS provides the code writing problem to let students study writing a source code for a

given assignment. In Java programming, encapsulation, inheritance, and polymorphism are the three fundamental

concepts as the object-oriented programming language that every student should understand and freely use them.

Previously, we proposed an informative test code approach for the code writing problem to help students studying

them. Unfortunately, the current test code allows students to write source codes that pass the tests but do not properly

use the three concepts. In this paper, we improve the informative test code by adopting the library functions to test

the private variables and the variables/methods in the super/sub classes, so that the source code can be passed only

when it uses the three concepts. For evaluations, we generated the improved informative test codes for Que and Stack,

and asked two students to write the source codes, where they completed them using the three concepts.

 Key words: JPLAS, informative, test code, encapsulation, inheritance, polymorphism

1. Introduction
To assist Java programming educations, we have

developed a Web-based Java Programming Learning

Assistant System (JPLAS) [1] that provides the code

writing problem to write a source code for a given

assignment. The correctness is verified through running

the test code on JUnit as the test-driven development

(TDD) method [2]. In Java programming, the

encapsulation, inheritance and polymorphism are

fundamental concepts as the object-oriented

programming (OOP) language that every student should

understand and freely uses them.

Previously, we proposed the informative test code

approach for the code writing problem to help students

studying these concepts through the code writing problem

[3]. The informative test code describes names of class,

methods and variables, access modifier, data types,

exception handling, behaviors and class inheritance. By

writing a source code to pass the informative test code, a

student is expected to write a source code that adopts the

same concepts of the model source code.

Unfortunately, the previous test code does not test

private variables for encapsulation, and variables/methods

in super/sub classes for inheritance and polymorphism. As

a result, it allows students to write the source codes that

pass the tests but do not properly use the three concepts.

In this paper, we improve the informative test code by

adopting the library functions in Java to test private

variables and variables/methods in super/sub classes. For

evaluations, we generated the improved informative test

codes for Que and Stack which follow the First-in-First-

Out and Last-in Fast-Out. Then, we asked eight students

to write the source codes, where they completed them

using the three concepts.

2. Proposal of Improved Informative Test
Code

In this section, we improve the informative test code for

three concepts [4]-[6].

2.1 Informative Test Code for Que Using

Encapsulation

The following test code 1 shows a part of the test code

that is generated from the source code for Que using

encapsulation. In this source code, the three variables

content, tail, and head are declared as private to be hidden

from other classes. content stores the string or integer

values, and tail and head store the first and last index

number of the stored values in content. Then, three

methods, push, empty, and pop are declared as public.

push inserts a new value to content, pop retrieves the

bottom value of the content, and empty returns true if

content is empty. content can be accessed through pop and

push methods.

test code 1

1: ………………………

 2:
3: public void test() throws Exception{

4: Que q = new Que();

5: Field f1=q.getClass().getDeclaredField(“content”);

6: Field f2=q.getClass().getDeclaredField(“tail”);

7: Field f2=q.getClass().getDeclaredField(“head”);

8: f2.setAccessible(true);

9: f3.setAccessible(true);

 //check the behaviors of push method

10: q.push(10);

11: q.push(“a”);

 //check the value of private variables

12: int tail=(int) f2.get(q);

13: assertEquals(2, tail);

 //check the behaviors of pop and empty

14: if(!q.empty()) {

15: assertEquals(10,q.pop());

16: assertEquals(“a”,q.pop());

17: }

18: int head=(int)f3.get(q);

19: assertEquals(2, head);

20: }

21: ………………………

中国地区 教育システム情報学会　2017年度学生研究発表会

233

In test code 1, library functions, setAccessible and get,

test the values of the private variables, tail, head, in lines

8, 9, 12, 13, 18 and 19. Then, pop tests the values of the

private variable, content, in lines 15 and 16.

2.2 Informative Test Code for Stack Using

Inheritance and polymorphism

The following test code 2 shows a part of the test code

that is generated from the source code for Que using

inheritance and polymorphism. In the source code, the

variables, content, tail, and head, and the methods, empty

and push, are inherited from Que. Then, pop is overwritten

in Stack from that in Que.

 In the test code 2, the library function, getSuperClass,

tests the super class in line 5. Then, the names of the

variables, content, tail, and head, and the methods, push,

pop, and empty, in the super class Que are described and

tested in lines 6 to 11. Then, the names, access modifier

and data types of pop in the sub class Stack are also

described and tested in lines 12 to 14.

test code 2

1:

2: ………………………..

3: public void test() throws Exception {

4: Stack s = new Stack();

5: Class<?> parentClass= s.getClass().getSuperClass();

 //check variable name

6: Field f1=parentClass().getDeclaredField(“content”);

7: Field f2=parentClass().getDeclaredField(“tail”);

8: Field f2=parentClass().getDeclaredField(“head”);

9: Method m1=parentClass().getDeclaredMethod

(“empty”,null);

10: Method m2=parentClass().getDeclaredMethod

(“pop”,null);

11: Method m3=parentClass().getDeclaredMethod

(“push”,Object.class);

12: Method mstack=s.getClass().getDeclaredMethod

(“pop”,null);

13: assertEquals(mstack.getModifier(),

Modifier.PULIC);

14: assertEquals(mstack.getReturnType(),Object.class);

15: }

16: …………………….

3. Evaluation
In this section, we evaluate the improved informative

test codes through applications to eight students in our

group. First we prepared the informative test codes for

Que and Stack.

Table 1: Metrics results for Que

Metrics Queue

S1 S2 S3 S4 S5 S6 S7 S8

NOC 1 1 1 1 1 1 1 1

NOM 3 3 3 3 3 3 3 3

VG 2 1 1 2 2 1 1 1

NBD 1 1 1 1 1 1 1 1

LCOM .5 5 .5 .5 .5 .6 .5 .3

TLC 16 18 10 18 19 15 15 23

MLC 3 6 3 6 7 3 3 12

Then, we asked them to write the source codes for

Que and Stack using the improved informative test codes.

Table 1 shows the metric results of the eight source codes

for Que. In any source code, NOC is 1 and NOM is 3.

They have the same number of classes and methods. This

reason is that any source is implemented using the class

and methods given in the test code. They also have the

good metrics for VG, NBD, and LCOM, where VG is 1-

2, NBD is 1 and LCOM is 0.3- 0.6 respectively.

Table 2: Metrics results for Stack

Metrics Stack

S1 S2 S3 S4 S5 S6 S7 S8

NOC 1 1 1 1 1 1 1 1

NOM 1 1 1 1 1 1 1 1

VG 1 1 1 2 1 1 1 1

NBD 1 1 1 1 1 1 1 1

LCOM 0 0 0 0 0 0 0 0

TLC 4 9 4 9 6 6 7 5

MLC 1 3 1 3 1 1 1 3

Table 2 shows the metric results of the eight source

codes for Stack. In any code, NOC is 1 and NOM is 1.

They have the same number of classes and methods by

implemented using class and methods in test code. They

also have good metrics for VG, NBD and LCOM where

VG is 1-2, NBD is 1 and LCOM is 0 respectively.

This evaluation results show that the students

completed high-quality source codes using three concepts

for Que and Stack by following the intentions of the test

codes. However, in both code, larger VG and MLC appear

since the codes are complex and hard to be modified. The

current test code cannot test the code quality directly.

4. Conclusion
In this paper, we proposed the improved informative

test code for the code writing problem in JPLAS to help

the students studying the encapsulation, inheritance, and

polymorphism. We evaluated the effectiveness through the

test codes for Que and Stack using three concepts. In

future works, we will improve the test code to test the

quality more and generate test codes using other source

codes for the three concepts to assign them to students.

References
(1) N. Funabiki, Y. Matsushim, T. Nakanishi, K. Watanabe, and

N. Amano, “A Java programming learning assistant system

using test –driven development method,” IAENG Int.J.

Computer Science, vol.40, no.1, pp.38-46, Feb.2013.

(2) K. Beck, Test-driven development: by example, Addison-

Wesley, 2002.

(3) K. K. Zaw and N. Funabiki, “An informative test code

approach for code writing problem in java programming

learning assistant system,” IEICE Tech. Report, SS-2017-

10, pp.31-36, Oct. 2017.

(4) Encapsulation, https://www.tutorialspoint.com/

java/java_encapsulation.htm.

(5) Inheritance, https://www.javapoint.com/inheritance-in-java

(6) Polymorphism, ttps://www.javapoint.com/runtime-

polymorphism-in-java

(7) Stack and Que, https://en.wikibooks.org/wiki/

Data_Structures/Stacks_and_Queue.

中国地区 教育システム情報学会　2017年度学生研究発表会

234

