
Generations of Informative Test Codes
for Studying Encapsulation, Inheritance, and Polymorphism

in Java Programming Learning Assistant System

Ei Ei MON*1, Nubuo FUNABIKI *2, Khin Khin ZAW*3

Graduate School of Natural Science and Technology
Okayama University, Japan

Email: eieimon@s.okayama-u.ac.jp, funabiki@okayama-u.ac.jp

Abstract： To assist Java programming educations, we have developed a Web-based Java Programming

Learning Assistant System (JPLAS). JPLAS provides the code writing problem to let students study

writing a source code for a given assignment. In Java programming, encapsulation, inheritance and

polymorphism are the three fundamental concepts as the object-oriented programming language, such that

every student understands and freely uses them. Previously, to help their studies, we proposed the

informative test code approach for the code writing problem in JPLAS, where we only generated the

informative test codes for Stack and Que using the three concepts for evaluations. In this paper, we

generate informative test codes for additional eight source codes using them in textbooks or Web sites and

investigate their solution performances by five students who are studying Java programming in our group.

Key words：JPLAS，code writing problem, informative test code，encapsulation, inheritance, polymorphism

1. Introduction
To assist Java programming educations, we have

developed a Web-based Java Programming Learning
Assistant System (JPLAS) [1] that provides the code
writing problem to let the students to study writing a
source code for a given assignment. The correctness of the
source code is verified through running the test code on
JUnit based on the test-driven development (TDD) method
[2]. In Java programming, encapsulation, inheritance and
polymorphism are three fundamental concepts as the
object-oriented programming (OOP) language that every
student should understand and freely uses them.

Previously, to help their studies, we proposed the
informative test code approach for the code writing
problem in JPLAS [3], where we only generated the
informative test codes for Stack and Que using the three
concepts. The informative test code describes names of
class, methods, and variables, access modifiers, data types,
exception handling, code behaviors, and class inheritances
that are related to the three concepts.

In this paper, we generate informative test codes for
additional eight source codes in textbooks [4] or Web sites
[5]-[9] and investigate solution performances of them by
five students who are studying Java programming in our
group.

2. Proposal of Informative Test Code for Three

OOP Concepts

 In this section, we present the informative test code for
three OOP concepts [10]. source code 1 describes the
classes to show the information of the teacher and student
such as the name and the salary using the three concepts.
In Teacher class, there are two variables: salary and name.
salary is declared as private to be hidden from other class
and name is declared as protected, to be inherited in
Student class. The five methods, setSelary, getSalary,
setName, getName, and status, are declared using public
as the setter/getter methods.

source code 1

1: public class Teacher {

2: private int salary;

3: protected String name;

4: public void setSalary(int salary){

5: this.salary=salary;

6: }

7: public int getSalary(){

8: return salary;

9: }

10: public void setName(String name){

11: this.name=name;

12: }

13: public String getName(){

14: return name;

15: }

16: public String status(){

17: return name+" is teacher";

18: }

19: }

20: public class Student extends Teacher{

21: public String status(){

22: return name+" is student";

23: }

24: }

test code 1 represents the generated informative for

source code 1. In test code 1, test 1 method tests the

names, access modifier, data types of variables and the

methods in Teacher class in lines 4 to 18. Then, it tests the

super class in line 20, and the names of the variables and

the methods in the super class Teacher in lines 21 to 25.

Finally, it tests the overwrite method status in the sub class

in lines 26 to 28. test2 method tests the behaviors of the

variables and the methods by using the library function

setAccessible in line 33. get is used to test the value of the

private variable salary in lines 36. It also tests the value of

the private variable in line 38.
test code 1

1: ………………………

2: public void test1() throws Exception{

3: Teacher t = new Teacher ();

4: Field tf1=t.getClass().getDeclaredField(“salary”);

5: Field tf2=t.getClass().getDeclaredField(“name”);

6: assertEquals(tf1.getModifier(), Modifier.PRIVATE);

中国地区 教育システム情報学会　2017年度学生研究発表会

229

 7: assertEquals(tf2.getModifier(),

Modifier.PROTECTED);

 8: assertEquals(tf1.getType(), int.class);

 9: assertEquals(tf2.getType(),String.class);

10: Method tm1=t.getClass().getDeclaredMethod

(“setSalary,int.class”);

11: Method tm2=t.getClass().getDeclaredMethod

(“getSalary,null”);

12: Method tm3=t.getClass().getDeclaredMethod

(“setName,String.class”);

13: Method tm4=t.getClass().getDeclaredMethod

(“getName,null”);

14: Method tm5=t.getClass().getDeclaredMethod

(“status,null”);

15: assertEquals (tm1.getModifiers(), Modifier.PUBLIC);

16: …………

17: assertEquals(tm1.getReturnType(),void.class);

18: …………

19: Student s=new Student();

20: Class<?> parentClass=s.getClass().getSuperClass();

21: Field parentf1=parentClass.getDeclaredField

(“salary”);

22: Field parentf1=parentClass.getDeclaredField(“name”);

23: Method parentm1=parentClass.getDeclaredMethod

(“setSalary”,int.class);

24: …………..

25: Method parentm1=parentClass.getDeclaredMethod

 (“status”,null);

26: Method sm1=s.getClass().getDeclaredMethods

(“status”, null);

27: assertEquals(sm1.getModifiers(),Modifier.PUBLIC);

28: assertEquals(sm1.getReturnType(), String.class);

29: }

30: public void test2() throws Exception{

31: Teacher t = new Teacher();

32: Field f = t.getClass().getDeclaredField(“salary”);

33: f.setAccessibe(true);

34: t.setSalary(5000);

35: t.setName(“Mr.Yamada”);

36: int salary = (int)f.get(t);

37: assertEquals(5000,salary);

38: assertEquals(5000,t.getsalary());

39: assertEquals(“Mr.Yamada”,t.getName());

40: assertEquals(“Mr.Yamada is teacher”, t.status());

41: Student s = new Student();

42: s.setName(“Mary”);

43: assertEquals(“Mary”, s.getName());

44: assertEquals(“Mary is student”, s.status());

45: }

3. Evaluation

We generated the informative test codes for eight source

codes P1~P8 using three concepts. They contain the

classes for teacher, two animals: one for inheritance and

one for polymorphism, author, book, car, circle, and

average calculation. Then, we asked five students to solve

them. Table 1 shows the average metrics values of the

complete codes measured by Metrics plugin for Eclipse.

For each test code, any source code has the same NOC and

NOM, except P5 by one student where he made default

constructors but did not use them. In P8, NOM is 8 since

he made default constructors but did not use them again.

VG, NBD, and LCOM have good values in any source

code. VG and NBD are 1 for any test code, since any code

does not include nested loops and conditional statements.

MLC is different depending on the code writing skill.

This evaluation results show that these students can

complete the high-quality source codes using three

concepts by following the intentions of the test codes.

However, the current test code cannot test the unnecessary

constructors in the source code.

Table 1: Metric Results

 P1 P2 P3 P4

NOC 2 3 1 1

NOM 2 3 6 8

VG 1 1 1 1

NBD 1 1 1 1

LCOM 0 0 0.53~0.667 0.643~0.75

TLC 16~19 18 26~28 34~35

MLC 2~4 3 8~9 11

 P5 P6 P7 P8

NOC 2 1 1 2

NOM 3~5 0 6 5~7

VG 1 1 1 1

NBD 1 1 1 1

LCOM 0.5 0 0.5~0.667 0.4~0.5

TLC 17~23 12~15 23~26 23~35

MLC 3~4 3~6 6~9 5~8

4. Conclusion
This paper generated informative test codes for eight

source codes using encapsulation, inheritance, and

polymorphism for the code writing problem in JPLAS. In

future works, we will improve the informative test code to

test unnecessary constructors in the source code.

References
[1] N. Funabiki, Y. Matsushim, T. Nakanishi, K. Watanabe, and

N. Amano, “A Java programming learning assistant system

using test –driven development method, ” IAENG Int. J.

Computer Science, vol.40, no.1, pp.38-46, Feb.2013.

[2] K. Beck, Test-driven development: by example, Addison-

Wesley, 2002.

[3] K. K. Zaw and N. Funabiki, “An informative test code

approach for code writing problem in java programming

learning assistant system,” IEICE Tech. Report, SS-2017-

10, pp.31-36, Oct. 2017.

[4] Java Books, https://beginnersbook.com/2013/03/.

[5] Complete Java, https://www.zealseeds.com/Lang/

LangJava/BasicGrammar/InheritanceOfJava/index.html.

[6] Introduction to Java,

http://www1.bbiq.jp/takeharu/java100.html.

[7] Java Programming, http://java.sevendays-study.com/ex-

day2.html.

[8] Java Class, https://itsakura.com/java-inheritance.

[9] Inheritance and polymorphism,

https://gist.github.com/rtoal/1685886e6605fe73b792.

[10] OOP concept, https://stackify.com/oops-concepts-in-java/.

中国地区 教育システム情報学会　2017年度学生研究発表会

230

https://www.zealseeds.com/Lang/

