Leveraging ubiquitous technologies for collaborative online learning

Zilu Liang^{*1,2}

*1Faculty of Engineering, Kyoto University of Advanced Science *2Institute of Industrial Science, The university of Tokyo Email: liang.zilu@kuas.ac.jp

Abstract : In this paper we present the use of a set of ubiquitous technologies to support collaborative learning in a virtual learning environment. The tool set mainly consists of Microsoft Teams and Sutori and could be augmented with other third-party technologies such as Google Drive and Dropbox. We present two case studies—an app development course and an academic writing course—to exemplify how to use this tool set for effective collaborative online learning.

Keyword: computer supported collaborative learning, online learning, multimedia

1. Introduction

Simply put, collaborative learning refers to pair or group study towards a shared learning goal. There has been increasing evidence that collaborative learning leads to better learning outcomes compared to individual learning [1, 2]. However, it has been a big challenge to achieve collaborative learning in a pure virtual online learning environment where the interaction pattern among teachers and students is altered due to lack of face-to-face contact. The works in literature in computer supported collaborative learning research mostly focus on a blended learning environment where learning occurs across physical and virtual settings, and hence may have limited application to a pure virtual online setting.

In our paper, we describe the use of a set of ubiquitous technologies to support collaborative learning in a pure virtual learning environment. The tool set mainly consists of Microsoft Teams and Sutori and could be augmented with other third-party technologies such as Google Drive and Dropbox. We present two case studies—an app development course and an academic writing course—to exemplify how to use this tool set for effective collaborative online learning.

2. Theoretical Framework

This work builds on theories of computer-supported collaborative learning (CSCL). CSCL can be conducted in many forms, ranging from collaborations within small group to massive collaborations for knowledge building and creation [3], and from interpersonal collaboration to human-machine collaboration (e.g. robots and agents) [4]. Jeong and Hmelo-Silver proposed 7 core affordances of technology for collaborative learning, including (1) engage in a joint task, (2) communicate, (3) share resources, (4) engage in productive collaborative learning process, (5) engage in co-construction, (6) monitor and regulate collaborative learning, and (7) find and build groups and communities [5].

In our case studies, we adopted cloud-based ubiquitous technologies to support learning in a pure virtual online learning environment. As has been shown in previous studies, cloud-based services can provide cost-effective solutions to educational needs [6, 7]. In what follows, we first present the learning design in section 3. In section 4, we present demonstrate how our approach support the seven affordances of collaborative learning.

3. Methodology

Our case studies focus on an app development course and an academic writing course. Both courses are for university freshmen and are offered through English medium instruction. The basic information and design of the courses are summarized in Table 1.

	Course I: Android App	Course II:
	Development	Introduction to
	_	Academic Writing
Level	Year 1	Year 1
Class size	41	2
Learning	Basic knowledge of app	Technical
goal	development and	communication
-	software project	skills including
	management	academic writing and presentation
Technology	Sutori web app,	Sutori web app,
used	Microsoft Teams,	Microsoft Teams,
	Flipgrid, Google Drive,	Dropbox
	GitHub	
Pre-class	All learning materials	All learning
activities	assembled on Sutori and	materials
	attached to MS Teams	assembled on
	before class	Sutori
In-class	Whole class activities	Co-creating
activities	and one-to-one real-time	learning materials
	trouble shooting and	on Sutori
	debugging using MS	
	Teams video meetings	
Post-class	Casual Q&A using MS	/
activities	Teams chat feature	
Homework	All code is pushed to	Directly attached
submission	GitHub	to Sutori
Assessment	Group presentation	Original papers
		submitted to /
		presentation in real
		conferences

Table 1 Basic Information and Design of Courses

4. Results

The course design combines multiple technologies to support the seven affordances of computer supported collaborative learning [5]. The mapping of both courses to the seven affordances are presented in Table 2 and Table 3. Students created tangible learning artifacts using the technologies.

Affordances	Technology	Learning	Learning A stife of
		Activity	Artilact
Establishing a	Sutori	Teacher	/
joint task		explain tasks	
Communication	MS Teams	Real-time	Post threads
		debugging;	in MS
		Q&A and	Teams
		discussions	
		using chat	
Sharing	MS Teams	Sharing	Shared res
resources		screenshots	ources
		and files	
Engaging in	GitHub	Project	Scrum
productive		planning	backlogs
process			c
Engaging in	Sutori	Co-creating	Group
co-construction	Flipgrid	presentation	presentation
	GitHub	slides;	slides;
		sharing	self-intro
		self-intro	videos; new
		videos;	apps
		creating new	
		apps	
Monitoring and	GitHub	Project	Scrum
regulation		monitoring	board
Finding and	MS Teams,	Group	Public
building group	GitHub	project,	repositories
and		publishing	on GitHub;
communities		original	peer
		code on	feedback
		GitHub,	
		peer	
		evaluation	

		0				
,	Table 2	Seven-A	Affordance	Mapping	g of Cour	se I

5. Discussion

Our approach of combining Sutori, MS Teams and a few third-party technologies supports the seven affordances of CSCL and can be applied to courses of distinct learning goals. The benefit of combining these ubiquitous learning technologies not only lies in the enhanced learning efficiency and learning experience in a virtual learning environment, but also the enriched educational outcomes. Students produced a variety of learning artifacts, ranging from presentation slides to public repositories to publications in real academic conferences. Moreover, being exposed to various ubiquitous technologies enhanced students' digital literacy, which is a critical skill needed in Society 5.0.

6. Conclusion and Future Work

We demonstrated how the use of multiple ubiquitous technologies can support collaborative learning in a virtual online environment in courses of different nature. Our future work includes collecting feedback from students and a formal evaluation of the approach.

References

 Springer, L. and Stanne, M.E.: "Effects of small-group learning on u ndergraduates in science, mathematics, e ngineering, and technology: a meta-analysis", Review of Educational Research, 69(1): p. 21-51 (1999).

- (2) Nokes-Malach, T.J., Richey, J.E. and Gadgil, S.: "When is it better to learn together? Insights from research on collaborative learning", Educational Psychology Review, 27: p. 645-656 (2015).
- (3) Halatchliyski, I., et al.: "Explaining authors' contribution to pivotal artifacts during mass collaboration in the Wikipedia's knowledge base", International Journal of Computer-Supported Collaborative Learning, 9: p. 97-115 (2014).
- (4) Leelawong, K. and Biswas, G.: "Designing learning by teaching agents: The Betty's brain system", International Journal of Artificial Intelligence in Education, 18: p. 181-208 (2008).
- (5) Jeong, H. and Hmelo-Silver, C.E.: "Seven affordances of computer-supported collaborative learning: how to support collaborative learning? How can technologies help?" Educational Psychologist, 51(2): p. 247-265 (2016).
- (6) Liang, Z. and Chapa-Martell, M.A.: "A top down approach for teaching web development on cloud", in IEEE International Conference on Teaching, Assessment and Learning for Engineering. Wollongong, Australia (2018).
- (7) Liang, Z., et al.: "Empowering globalization of engineering education with open-source e-learning platform and cloud computing technology", in Annual Conference of Japan Society for Engineering Education International Session. Tokyo, Japan. p. 19-24 (2017).

Affordances	Technology	Learning	Learning
		Activity	Artifact
Establishing a joint task	Sutori	Teacher explain tasks	/
Communication	MS Teams	Discussions through video meeting and chat	Post threads in MS Teams; video recording of class
Sharing resources	Sutori, Drop box	Sharing reference papers and paper writing documents	Shared resources
Engaging in productive process	/	/	/
Engaging in co-construction	Sutori, Dropbox	Co-creating learning materials; co-writing papers; co-creating presentation slides	Learning materials, papers, presentatio n slides,
Monitoring and regulation	Sutori	Make sure to submit paper by deadline	/
Finding and building group and communities	/	Make submis sions to and present in real conferences	Published papers; new connection in conference

Table 3 Seven-Affordance Mapping of Course II