OpenFlow を用いたルーティング学習教材の開発

Development of Learning Materials for Routing by Using the OpenFlow

石川 有彩^{*1}, 吉原 和明^{*2}, 井口 信和^{*3}, 渡辺 健次^{*4}
Arisa ISHIKAWA^{*1}, Kazuaki YOSHIHARA^{*2}, Nobukazu IGUCHI^{*3}, Kenzi WATANABE^{*4}

^{*1}広島大学教育学研究科

*1Graduate School of Education, Hiroshima University
*2福山大学工学部

*2Faculty of Engineering, Fukuyama University
*3 近畿大学理工学部

*3Faculty of Science and Engineering, Kindai University
*4 広島大学人間社会科学研究科

^{*4}Graduate School of Humanities and Social Sciences, Hiroshima University Email: m196554@hiroshima-u.ac.jp

あらまし: 高等学校学習指導要領解説情報編には、学習内容として「情報通信ネットワークの仕組みと構成要素を理解する」ことが示されている。しかし、実世界の情報通信ネットワークの構成要素である、ルータやL2スイッチなどは教材として用意することが難しく、体験的な学習が行われていない。そこで本研究では、OpenFlow という技術を用いて、様々なネットワーク機器の演習を行える教材の開発を行っている。

キーワード: 教材開発, 情報通信ネットワーク, 演習, OpenFlow, 可視化

1. はじめに

高等学校学習指導要領解説情報編¹には、学習内容として「情報通信ネットワークの仕組みと構成要素を理解する」ことが示されている.しかし、実世界の情報通信ネットワークの構成要素である、ルータや L2 スイッチなどは教材として用意することが難しく、体験的な学習が行われていない.

そこで本研究では、OpenFlow という技術を用いて、 様々なネットワーク機器の演習が行える教材の開発 を行っている。

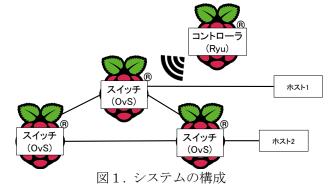
2. 教材の開発

2.1 OpenFlow

OpenFlow はソフトウェアによりネットワークの 制御機能を自由に設計・実装することができる技術 である。OpenFlow は「OpenFlow スイッチ(以下, スイッチ」と呼ばれる転送部と,「OpenFlow コント ローラ(以下,コントローラ」と呼ばれる制御部に 分かれており,コントローラでスイッチの転送機能 を自由に設計・実装することができる。

つまり、コントローラからスイッチに指示を与えることで、スイッチにルータの機能を持たせたり、 L2 スイッチの機能を持たせたりすることができる. 本研究では、コントローラに「Ryu」を、スイッ

チには「Open vSwitch (以下, OvS」を用いた.


また、Ryu には WSGI に対応した Web サーバの機能があり、REST API を作成することができる 2 . この機能を利用して、外部からスイッチの IP アドレスや経路情報などを設定することができる.

2.2 システムの構成

教材の開発には4つの Raspberry Pi 3 を用意し,1 つはコントローラ,残り3つはスイッチとして用いた. Raspberry Pi 3 には WiFi モジュールが内蔵されており,無線通信を行うことができる.

システムの構成を図1に示す. コントローラとスイッチ間の通信や, スイッチ同士のシステム上の通信は無線で行った. また, OpenFlow で制御するネットワークは有線で構築した.

本研究では、ホストから有線ネットワークに ping を送信し、ICMP パケットが流れる様子を LED テープの光で可視化する.

2.3 パケットキャプチャ

ICMP パケットの流れる様子を LED テープの光で可視化するためには、パケットをキャプチャする必要がある. 本研究では、OpenFlow を用いたパケットキャプチャの方法を考案した.

まず, ping を実行した時に送信される, ICMP パケットがスイッチへ来た時, スイッチはそのパケッ

トを適切に処理しつつ、コントローラへ転送する.

パケットを受け取ったコントローラは、そのヘッダ情報を解析し、送信元 IP アドレスや宛先 IP アドレスなど、LED テープを光らせるための情報が入ったメッセージを生成する。そして、そのメッセージを無線でスイッチへ送信する。

メッセージを受け取ったスイッチはその内容から, 自機が制御している LED テープをどのように光ら せるかを決定する.

2.4 メッセージを用いた LED テープの制御

LED テープは,スイッチとして用いている Raspberry Pi で制御しており,LAN ケーブル一本に LED テープが一本対応するように用意した.

スイッチが LED テープを制御するには、光の流れる方向と光らせるタイミングを決定する必要があり、その判断材料となるのがパケットのヘッダ情報である. そこで、コントローラが Raspberry Pi にメッセージを送ることで、LED テープの制御を行うようにした.

メッセージには、パケットがどのポートから入ってきたかを表す「in_port」と、そのパケットの宛先タイプ、送信元 IP アドレス、宛先 IP アドレスもしくはゲートウェイの IP アドレスの情報が格納されている.

宛先タイプとは、パケットキャプチャしたスイッチにとって、ping の宛先がどの位置にあるかを分けたものである.以下のように分けられる.

- A) ping の宛先が自機
- B) ping の宛先が自機のリンク上にある
- C) ping の宛先が自機のリンク上にはない

このメッセージを用いた LED テープの制御の流れを述べる.

まず、コントローラからパケットキャプチャのメッセージを受け取ったスイッチは、送信元 IP アドレスと自機の IP アドレスを照らし合わせ、ping の送信元がリンク上にあるかどうかを調べる。送信元がリンク上にあれば、自機が制御している LED テープのうち、in_port 側に対応しているものを光らせる。送信元がリンク上になければ、別の Raspberry Pi が送信元から自機のもとへ光を流し終えるまで待機する。

次に、宛先タイプが A なら、光の向きを変えても う一度光らせる.これで、自機に光が流れ込んだ後、 自機から光が出て行く、という ICMP エコー要求と ICMP エコー応答の様子を表現することができる.

宛先タイプが B なら、宛先がある側の LED テープを光らせる.

宛先タイプが C なら、ゲートウェイがある側の LED テープを光らせる.

このように, メッセージの内容に応じて LED テープの制御を行った.

2.5 ルーティングの実験

図1の構成で、OpenFlow スイッチにルータの機能を実装して実験を行った.

まず、コントローラでルータのアプリを実行する. 次にスイッチで LED テープを制御するためのプログラムを実行する. そして、スイッチの IP アドレスや経路情報を HTTP メソッドでコントローラに送信して設定を行う.

この状態で ping を送信して実験を行った. 図 2 は ホスト 1 からホスト 2 ~ ping を送信し、その流れを LED テープの光で可視化している様子である. 右下の LED テープはホスト 2 とスイッチの間のパケットの流れを表現している.

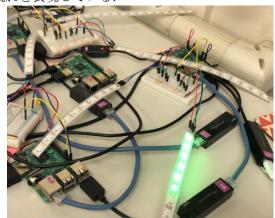


図2. 実験の結果

ホスト1から全てのインターフェイスへ ping を送信した場合と、ホスト2から全てのインターフェイスへ ping を送信した場合の実験を行った。結果、全ての場合で正しくパケットの流れを可視化することができた。

3. おわりに

本研究では、OpenFlowを用いたルーティング学習教材の開発を行った.本教材では、コントローラからスイッチにルータの役割をするよう指示して、その際のスイッチの IP アドレスや経路情報を設定することができる.また、そうして構築したネットワークを流れるパケットの流れを LED テープの光の流れで確認できるようにした.

今後はL2スイッチや Firewall なども OpenFlow で 実装し、それらで構築されたネットワークを流れる パケットを、LED テープの光で可視化できるように する. また、生徒が IP アドレスや経路情報を設定す る際のインターフェイスについても考える必要があ る.

謝辞

本研究は JSPS 科研費 18K11570 の助成を受けたものです.

参考文献

- (1) 文部科学省:高等学校学習指導要領解説情報編, p.35 (2018)
- (2) RYU project team:"REST 連携-Ryubook1.0 ドキュメント", https://osrg.github.io/ryu-book/ja/html/rest_api.htm [>(2020 年 6 月 2 日アクセス)