\mathbf{e} ラーニングを導入した情報科目の全学展開と教育効果の検証 Introducing e－Learning into Information Literacy as General Education and Its Evaluation

小島 篤博 ${ }^{* 1}$ ，真嶋 由貴恵 ${ }^{* 1}$ ，前川 泰子 ${ }^{* 1}$
Atsuhiro Kojima＊1，Yukie Majima＊1，Yasuko Maekawa＊1
＊1 大阪府立大学 現代システム科学域 知識情報システム学類
＊1 School of Knowledge and Information Systems， College of Sustainable System Sciences，Osaka Prefecture University

Abstract

あらまし：本研究では，全学の 1 年次を対象とした情報科目における，eラーニング教村を導入した授業デ ザインとその実践について報告する。授業デザインの特徴は，講師による対面授業と e ラーニングを併用し ていること，オンラインテストやスキルテスト等の達成度評価を行うことなどにより，基礎的な情報学の知識とスキルの定着を図ることを目的としている点である。テストやアンケートから，対象クラスの教育効果 を検証する。

キーワード：情報教育，eラーニングの実践，授業分析

1 はじめに

大阪府立大学（以下「本学」）では，平成 9 年度よ り全学共通科目として情報リテラシー教育を実施し ており，これまで幾度か見直しを行っているが，平成 24 年度からは従来のカリキュラムおよび教育体制を大幅に見直し，全学域の1年次を対象とした「情報基礎」を実施することとなった［1］．新カリキュラム では，教員による対面授業とeラーニングとを併用 したブレンデッド形式を採用するとともに，オンライ ンテストや課題による客観的評価や，ポートフォリオ による授業項目の振り返りなど，知識とスキルの定着を図ることを目的としている。

本稿では，全学共通の情報科目である「情報基礎」 における授業デザインを紹介するとともに，種々の統計データをもとに教材や教育効果について評価を行う。

2 「情報教育」の授業デザイン

本学では，平成 24 年度より全学共通の情報科目と して「情報基礎」を 1 年次配当とし，基礎的な情報の知識・リテラシーを習得する科目と位置づけている。 これとともに再編した教育体制においては，全学域 を対象に情報専門の教員が担当している。また，授業で使用する教材（PowerPoint，e ラーニング）は基本的に同一のものを使用している。eラーニングを積極的に採用した理由は，従来の情報教育においては，情報の知識に関する講義より，文書作成や表計算など の操作実習に多くの時間を割り当ててしまう傾向が

表 1：「情報基礎」の授業計画

	項目	講義方法
1	大学の情報環境ガイダンス Windows の基本操作	解説 演習
2	情報社会の法律・モラル 電子メールの操作	解説／EL 演習
3	ICT 基礎知識（コンピュータ） オンラインテスト（情報社会）	解説／EL
4	ICT 基礎知識（ネットワーク オンラインテスト（コンピュータ）	解説／EL
5,6	PowerPoint によるプレゼン オンラインテスト（ネットワーク） ビジュアル表現	演習
7	Web 情報検索 オンラインテスト（ビジュアル表現）	解説／EL

あったためであり，eラーニングを導入することによ り，知識の習得については時間外学習を促進する狙い がある。

「情報基礎」の授業計画を表1に示す。表において ELと記してある部分が e ラーニングの教材を使用す る部分である。講義においては，教員があらかじめ重要なポイントを解説するとともに，eラーニング教材 を利用することで，各自のペースで学習ができるよう配慮している。また，eラーニングの前後において， LMS を利用したオンラインテストを実施し，学習者

表 2：オンラインテストの結果

	プレ	ポスト	Δ
情報社会	7.34	7.93	0.61
コンピュータ	6.93	7.10	0.31
ネットワーク	6.84	7.42	0.58
ビジュアル	5.92	6.87	0.95

表 3：オンラインテストと教材完了率の相関

	ポスト (N)	$\Delta(\mathrm{N})$	完了率
情報社会	$0.1359(1413)$	$0.0418(1380)$	82.4%
コンピュータ	$0.1492(1401)$	$0.0151(1332)$	82.1%
ネットワーク	$0.2044(1396)$	$0.0766(1341)$	82.9%
ビジュアル	$0.2136(1396)$	$0.0842(1333)$	61.7%

への動機付けと学習内容の定着を図るなどの工夫を している。eラーニング教材としては，「情報基礎」の教育内容や対象学生の知識レベルを考慮して選択し た結果，noa 出版 Rasti－Learning 教材を採用している。
Word や Excel など具体的なアプリケーションを用 いた演習については，提出課題を科すほか，授業時間内に時間制限を設けて一定の操作を行わせるスキル テストも実施する。また，授業後半では，5名程度の グループ分けを行い，各グループごとにテーマを決 めさせ，最終2回で PowerPoint を用いたグループ発表を行わせる。グループ発表の評価は，学生同士によ るピア評価を採用している。

3 教育効果の検証

「情報基礎」のクラスは全体で 13 クラス，受講者数は 50 名～ 150 名と比較的大人数である。LMS （Moodle）を活用しており，eラーニング，小テスト，ア ンケート，フォーラム，資料配布等のプラットフォー ムとしている。原稿執筆時点で得られた各種統計デー夕を基に，これまでの教育効果の検証を行う。

まず，eラーニングの前後で実施した，教材の内容 に関するオンラインテストの平均点を表 2 に示す。そ れぞれ 10 点満点となっているが，プレテストは 5 問 （各 2 点），ポストテストは 10 問（各 1 点）とし，いず れも同じ問題プールからランダムに出題した。 Δ は，両方のテストを受験した学生の，前後の得点の変化 を示している。ポストテストの平均が概ね 7 割程度 に達しているが，残りの項目についても達成させる方策を今後検討していく必要がある。

また，eラーニングによる自己学習の効果を確認す るため，eラーニング教材の完了率（コンテンツ全体 のうち完了した割合）とポストテスト，およびプレ／ポ ストの得点差 (Δ) との相関を取った結果を表 3 に示

図1：学習項目の達成状況

す．ネットワーク（ICT の基礎知識・ネットワーク編）， ビジュアル表現にやや相関が見られるものの，全体的 な相関は弱いという結果になった。昨年度，再履修者 を対象に実施した例では，最大 0.5 程度の相関が認め られているが［2］，今回は全般的に完了率が高く，そ れ自体が大きな要因とはなっていないと考えられる。今後は，LMSのログを分析するなどにより，より実態に近い学習時間をもとに再評価する必要があると考えている。

この他，毎時間の最後に，LMS のアンケート機能 を利用したポートフォリオを記入させている。これ は，各学習項目ごとに，内容を理解した／操作を習得 したなどの達成／未達成をチェックさせるとともに，感想等をテキストで記入させ，授業のポイントを改 めて認識させる狙いがある。第1回～7回までの集計 では，学習項目ごとの達成率は高く（ $84.5 \% \sim 99.6 \%)$ なっている。学習項目の例を図 1 に示す。

4 まとめ

eラーニングを導入した情報科目「情報基礎」にお ける教育効果について評価した。現在当該の授業を実施している途上であり，引き続きデータを蓄積する とともに，アンケートやポートフォリオに記入された テキストデータの分析なども行う予定である。

参考文献

［1］小島篤博，真嶋由貴恵，前川泰子，青木茂樹，宮本貴朗：＂全学情報教育に向けたインストラクショナルデザ インとその試行＂，教育システム情報学会第36回全国大会論文集，pp．370－371（2011）
［2］小島篤博，前川泰子，真嶋由貴恵，青木茂樹，宮本貴朗：＂全学情報教育におけるeラーニングの導入とその評価＂，大学 ICT 推進協議会2011年度年次大会論文集， pp．177－180（2011）

